Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1-(4-Methylphenyl)-5-oxo-2-phenylpyrrolidine-2-carboxamide-methanol (1/1)

#### Rafael Tamazyan,<sup>a</sup>\* Armen Ayvazyan,<sup>a</sup> Ashot Martirosyan,<sup>b</sup> Gohar Harutyunyan<sup>b</sup> and Raymond Schinazi<sup>c</sup>

<sup>a</sup>Molecular Structure Research Center, National Academy of Sciences RA, Azatutyan Ave. 26, 375014 Yerevan, Republic of Armenia, <sup>b</sup>Institute of Fine Organic Chemistry, National Academy of Sciences RA, Azatutyan Ave. 26, 375014 Yerevan, Republic of Armenia, and <sup>c</sup>Emory University School of Medicine, Veterans' Affairs Medical Center, 1670 Clairmont Road, 151-H Decatur, GA 30033-4004, USA Correspondence e-mail: rafael@msrc.am

Received 24 August 2007; accepted 3 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.110; data-to-parameter ratio = 14.6.

1-(4-Methylphenyl)-5-oxo-2-phenylpyrrolidine-2-carboxamide is a potential anti-human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitor. In the title compound,  $C_{18}H_{18}N_2O_2$ ·CH<sub>4</sub>O, the pyrrolidine ring has a well expressed envelope conformation. The 1-(4-methylphenyl)-5oxo-2-phenylpyrrolidine-2-carboxamide molecules are connected into infinite chains *via* hydrogen bonding with CH<sub>3</sub>OH solvent molecules.

#### **Related literature**

For details of the synthesis, see: Martirosyan *et al.* (2000, 2004). For details of the pharmacological properties of compounds of this family, see: De Clercq (1996). For the crystal structures of some analogs of the title compound, see: Karapetyan *et al.* (2002) and Tamazyan *et al.* (2002).



#### **Experimental**

Crystal data  $C_{18}H_{18}N_2O_2 \cdot CH_4O$  $M_r = 326.39$ 

Monoclinic,  $P2_1/n$ *a* = 7.9421 (16) Å b = 20.761 (4) Åc = 10.403 (2) Å $\beta = 94.47 (3)^{\circ}$  $V = 1710.2 (6) \text{ Å}^{3}$ Z = 4

#### Data collection

| Enraf-Nonius CAD-4           | 2990 reflections with $I > 2\sigma(I)$ |
|------------------------------|----------------------------------------|
| diffractometer               | $R_{\rm int} = 0.030$                  |
| Absorption correction: none  | 3 standard reflections                 |
| 8228 measured reflections    | frequency: 180 min                     |
| 4122 independent reflections | intensity decay: none                  |
|                              |                                        |
| Refinement                   |                                        |

 $R[F^2 > 2\sigma(F^2)] = 0.043$ H atoms treated by a mixture of<br/>independent and constrained<br/>refinementS = 1.02refinement4122 reflections $\Delta \rho_{max} = 0.22$  e Å<sup>-3</sup><br/> $\Delta \rho_{min} = -0.22$  e Å<sup>-3</sup>

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|--------------|--------------|--------------------------------------|
| O3−H3o···O2                 | 0.84 (2) | 1.90 (2)     | 2.741 (2)    | 176 (2)                              |
| $N2^{i}-H2nB^{i}\cdots O3$  | 0.91 (2) | 2.00 (2)     | 2.860 (2)    | 156 (2)                              |

Data collection: *CAD-4 DATCOL* (Enraf–Nonius, 1988); cell refinement: *CAD-4 LS* (Enraf–Nonius, 1988); data reduction: *HELENA* (Spek, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-NT* (Bruker, 2000) and *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXTL-NT*.

We thank the Civilian Research and Development Foundation (CRDF), USA, within which framework this research was carried out (grant No. ARB2-2701-YE-05).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2158).

#### References

- Bruker (2000). SHELXTL-NT. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Clercq, E. (1996). Rev. Med. Virol. 6, 97-117.
- Enraf-Nonius (1988). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Karapetyan, H., Tamazyan, R., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, 0399–0401.
- Martirosyan, A. O., Gasparyan, S. P., Oganesyan, V. E., Mndzhoyan, Sh. L., Alexanyan, M. L., Nikishchenko, M. N. & Babayan, G. Sh. (2000). *Chem. Heterocycl. Compd.* 36, 416–419.
- Martirosyan, A. O., Hovhannesyan, V. E., Gasparyan, S. P., Karapetyan, H. A., Panosyan, G. A. & Martirosyan, V. O. (2004). *Chem. Heterocycl. Compd.* 40, 1007–1008.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.
- Tamazyan, R., Karapetyan, H., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, 0386–0388.

Mo  $K\alpha$  radiation  $\mu = 0.09 \text{ mm}^{-1}$ 

 $0.35 \times 0.28 \times 0.23$  mm

T = 293 (2) K

supplementary materials

Acta Cryst. (2007). E63, o4017 [doi:10.1107/81600536807043188]

### 1-(4-Methylphenyl)-5-oxo-2-phenylpyrrolidine-2-carboxamide-methanol (1/1)

### R. Tamazyan, A. Ayvazyan, A. Martirosyan, G. Harutyunyan and R. Schinazi

#### Comment

The interest in the X-ray structural investigation of the title compound is stimulated by their potential HIV-1 RT inhibition properties (De Clercq, 1996). These compounds belong to a family of non-nucleoside reverse transcriptase inhibitors (NNRTIs). Related structures have been published by Karapetyan *et al.*, 2002 and Tamazyan, *et al.*, 2002.

A view of the molecule with our numbering scheme is depicted in Fig. 1. A 11 intramolecular interatomic distances are in good agreement with their mean statistical values. The crystal structure consists of infinite chains along the [10T] direction of crystal lattice. These chains molecules are formed by molecules of the title compound,  $C_{18}H_{18}N_2O_2$ , and solvent CH<sub>3</sub>OH molecules *via* O2···H3o—O3···H2b<sup>i</sup>—N2<sup>i</sup> hydrogen bonding (Fig.2).

#### Experimental

The title compound was synthesized by the cycloalkylation of N1-cyano(phenyl)methyl-N1-(4-methylphenyl)-3-chloropropanamide under phase-transfer catalysis conditions and then by hydrolysis in concentrated sulfuric acid as it is described by Martirosyan *et al.*, 2000, 2004. The compound as synthesized is a racemic mixture of molecules (2*R* and 2S)-1-(4-methylphenyl)-5-oxo-2-phenyltetrahydro-1H -2-pyrrolecarboxamide. The crystals were grown from a methanol solution of the compound.

#### Refinement

The positional parameters of H atoms besides those belonging to methyl groups were determined from difference Fourier maps. H atoms of methyl groups were positioned geometrically and refined using a riding model with C—H = 0.96 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$ . The positional parameters of all atoms, anisotropic thermal parameters of nonhydrogen atoms and isotropic thermal parameters of remaining hydrogen atoms were refined without restraints.

Figures



Fig. 1. A view of the molecule with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.



Fig. 2. The formation of infinite chain of molecules *via* hydrogen bonding. For clarity only H atoms participating in bonding are depicted. Symmetry codes: (i) 1/2 + x, 1/2 - y, -1/2 + z; (ii) 1 + x, y, -1 + z; (iii) 1.5 + x, 1/2 - y, -1.5 + z.

## 1-(4-methylphenyl)-5-oxo-2-phenylpyrrolidine-2-carboxamide –methanol (1/1)

| Crystal data                     |                                                  |
|----------------------------------|--------------------------------------------------|
| $C_{18}H_{18}N_2O_2{\cdot}CH_4O$ | $F_{000} = 696$                                  |
| $M_r = 326.39$                   | $D_{\rm x} = 1.268 {\rm ~Mg~m}^{-3}$             |
| Monoclinic, $P2_1/n$             | Melting point: 96.0 K                            |
| Hall symbol: -P 2yn              | Mo K $\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| <i>a</i> = 7.9421 (16) Å         | Cell parameters from 25 reflections              |
| b = 20.761 (4)  Å                | $\theta = 10 - 15^{\circ}$                       |
| c = 10.403 (2) Å                 | $\mu = 0.09 \text{ mm}^{-1}$                     |
| $\beta = 94.47 \ (3)^{\circ}$    | T = 293 (2)  K                                   |
| V = 1710.2 (6) Å <sup>3</sup>    | Prism, colourless                                |
| Z = 4                            | $0.35 \times 0.28 \times 0.23$ mm                |

#### Data collection

| Enraf–Nonius CAD-4<br>diffractometer     | $R_{\text{int}} = 0.030$             |
|------------------------------------------|--------------------------------------|
| Radiation source: fine-focus sealed tube | $\theta_{\text{max}} = 28.0^{\circ}$ |
| Monochromator: graphite                  | $\theta_{\min} = 2.0^{\circ}$        |
| T = 293(2)  K                            | $h = -10 \rightarrow 10$             |
| $\theta/2\theta$ scans                   | $k = 0 \rightarrow 27$               |
| Absorption correction: none              | $l = -13 \rightarrow 13$             |
| 8228 measured reflections                | 3 standard reflections               |
| 4122 independent reflections             | every 180 min                        |
| 2990 reflections with $I > 2\sigma(I)$   | intensity decay: none                |

#### Refinement

methods

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.043$                        | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.110$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0491P)^2 + 0.3702P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.02                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 4122 reflections                                       | $\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$                                 |
| 283 parameters                                         | $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

sup-2

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x             | У           | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|-------------|--------------|---------------------------|
| C1   | 0.09584 (16)  | 0.29428 (7) | 0.70924 (12) | 0.0236 (3)                |
| N1   | 0.25160 (13)  | 0.28492 (5) | 0.64212 (10) | 0.0241 (2)                |
| 01   | 0.46719 (12)  | 0.21200 (5) | 0.63351 (11) | 0.0363 (3)                |
| C2   | 0.13038 (19)  | 0.24956 (8) | 0.82787 (13) | 0.0304 (3)                |
| H2A  | 0.192 (2)     | 0.2739 (8)  | 0.8979 (16)  | 0.036 (4)*                |
| H2B  | 0.024 (2)     | 0.2325 (8)  | 0.8585 (16)  | 0.041 (5)*                |
| H2NA | -0.297 (2)    | 0.2556 (9)  | 0.6374 (18)  | 0.046 (5)*                |
| H2NB | -0.222 (2)    | 0.3044 (9)  | 0.7367 (18)  | 0.043 (5)*                |
| N2   | -0.20793 (15) | 0.27778 (7) | 0.66831 (13) | 0.0310 (3)                |
| 02   | -0.03691 (12) | 0.22527 (5) | 0.54227 (10) | 0.0348 (3)                |
| C3   | 0.24343 (19)  | 0.19719 (8) | 0.77964 (15) | 0.0326 (3)                |
| H3A  | 0.320 (2)     | 0.1794 (9)  | 0.8450 (17)  | 0.042 (5)*                |
| H3B  | 0.175 (2)     | 0.1615 (9)  | 0.7353 (17)  | 0.043 (5)*                |
| C4   | 0.33748 (16)  | 0.23050 (7) | 0.67804 (13) | 0.0265 (3)                |
| C5   | 0.30378 (16)  | 0.32782 (7) | 0.54477 (13) | 0.0242 (3)                |
| C6   | 0.43874 (17)  | 0.36892 (7) | 0.57445 (15) | 0.0305 (3)                |
| H6   | 0.493 (2)     | 0.3684 (8)  | 0.6611 (16)  | 0.033 (4)*                |
| C7   | 0.4904 (2)    | 0.41026 (8) | 0.48041 (16) | 0.0362 (3)                |
| H7   | 0.582 (2)     | 0.4392 (9)  | 0.4998 (17)  | 0.046 (5)*                |
| C8   | 0.4083 (2)    | 0.41248 (7) | 0.35797 (15) | 0.0351 (3)                |
| C9   | 0.4635 (3)    | 0.45847 (9) | 0.25726 (19) | 0.0544 (5)                |
| H9A  | 0.4045        | 0.4986      | 0.2633       | 0.082*                    |
| H9B  | 0.4384        | 0.4403      | 0.1731       | 0.082*                    |
| H9C  | 0.5829        | 0.4658      | 0.2712       | 0.082*                    |
| C10  | 0.2733 (2)    | 0.37093 (8) | 0.33059 (15) | 0.0343 (3)                |
| H10  | 0.215 (2)     | 0.3694 (8)  | 0.2450 (18)  | 0.042 (5)*                |
| C11  | 0.22140 (18)  | 0.32872 (7) | 0.42227 (14) | 0.0292 (3)                |
| H11  | 0.132 (2)     | 0.2979 (8)  | 0.4011 (16)  | 0.035 (4)*                |
| C12  | -0.05730 (16) | 0.26366 (7) | 0.62983 (12) | 0.0243 (3)                |
| C13  | 0.07342 (17)  | 0.36569 (7) | 0.73870 (14) | 0.0286 (3)                |
| C14  | -0.0165 (2)   | 0.40578 (8) | 0.65111 (16) | 0.0377 (4)                |
| H14  | -0.067 (2)    | 0.3876 (9)  | 0.5741 (19)  | 0.050 (5)*                |
| C15  | -0.0277 (2)   | 0.47155 (9) | 0.6730 (2)   | 0.0475 (4)                |

# supplementary materials

| H15  | -0.092 (3)   | 0.4978 (11)  | 0.612 (2)    | 0.061 (6)* |
|------|--------------|--------------|--------------|------------|
| C16  | 0.0504 (3)   | 0.49807 (9)  | 0.7833 (2)   | 0.0546 (5) |
| H16  | 0.042 (3)    | 0.5427 (11)  | 0.799 (2)    | 0.062 (6)* |
| C17  | 0.1403 (3)   | 0.45928 (10) | 0.8694 (2)   | 0.0606 (6) |
| H17  | 0.197 (3)    | 0.4758 (12)  | 0.947 (2)    | 0.080 (7)* |
| C18  | 0.1530 (2)   | 0.39355 (9)  | 0.84826 (18) | 0.0455 (4) |
| H18  | 0.224 (3)    | 0.3675 (10)  | 0.908 (2)    | 0.060 (6)* |
| O3   | 0.15641 (18) | 0.15833 (7)  | 0.38084 (12) | 0.0523 (4) |
| H3O  | 0.099 (3)    | 0.1805 (12)  | 0.430 (2)    | 0.078 (8)* |
| C19  | 0.2047 (3)   | 0.10171 (9)  | 0.44502 (18) | 0.0544 (5) |
| H19A | 0.2758       | 0.1118       | 0.5212       | 0.082*     |
| H19B | 0.2654       | 0.0749       | 0.3894       | 0.082*     |
| H19C | 0.1060       | 0.0793       | 0.4688       | 0.082*     |
|      |              |              |              |            |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0186 (6)  | 0.0312 (7)  | 0.0213 (6)  | -0.0009 (5)  | 0.0034 (5)   | -0.0005 (5)  |
| N1  | 0.0175 (5)  | 0.0297 (6)  | 0.0253 (5)  | 0.0008 (4)   | 0.0037 (4)   | 0.0033 (5)   |
| 01  | 0.0213 (5)  | 0.0366 (6)  | 0.0515 (6)  | 0.0041 (4)   | 0.0057 (4)   | 0.0027 (5)   |
| C2  | 0.0288 (7)  | 0.0387 (8)  | 0.0235 (7)  | -0.0044 (6)  | 0.0001 (6)   | 0.0048 (6)   |
| N2  | 0.0194 (5)  | 0.0407 (7)  | 0.0334 (6)  | -0.0021 (5)  | 0.0045 (5)   | -0.0081 (6)  |
| 02  | 0.0247 (5)  | 0.0455 (6)  | 0.0341 (5)  | 0.0002 (4)   | 0.0018 (4)   | -0.0143 (5)  |
| C3  | 0.0267 (7)  | 0.0361 (8)  | 0.0343 (8)  | -0.0025 (6)  | -0.0015 (6)  | 0.0106 (7)   |
| C4  | 0.0192 (6)  | 0.0279 (7)  | 0.0318 (7)  | -0.0024 (5)  | -0.0028 (5)  | 0.0008 (6)   |
| C5  | 0.0200 (6)  | 0.0265 (7)  | 0.0269 (6)  | 0.0034 (5)   | 0.0062 (5)   | 0.0006 (5)   |
| C6  | 0.0264 (7)  | 0.0331 (8)  | 0.0321 (7)  | -0.0014 (6)  | 0.0024 (6)   | 0.0010 (6)   |
| C7  | 0.0317 (8)  | 0.0320 (8)  | 0.0459 (9)  | -0.0056 (6)  | 0.0093 (7)   | 0.0032 (7)   |
| C8  | 0.0388 (8)  | 0.0299 (8)  | 0.0386 (8)  | 0.0081 (6)   | 0.0166 (6)   | 0.0073 (6)   |
| C9  | 0.0663 (12) | 0.0456 (10) | 0.0547 (11) | 0.0038 (9)   | 0.0260 (9)   | 0.0187 (9)   |
| C10 | 0.0392 (8)  | 0.0365 (8)  | 0.0275 (7)  | 0.0075 (7)   | 0.0042 (6)   | 0.0039 (6)   |
| C11 | 0.0267 (7)  | 0.0323 (7)  | 0.0287 (7)  | 0.0005 (6)   | 0.0022 (5)   | 0.0005 (6)   |
| C12 | 0.0210 (6)  | 0.0291 (7)  | 0.0230 (6)  | 0.0006 (5)   | 0.0021 (5)   | 0.0020 (5)   |
| C13 | 0.0224 (6)  | 0.0324 (7)  | 0.0322 (7)  | -0.0017 (5)  | 0.0093 (5)   | -0.0035 (6)  |
| C14 | 0.0421 (9)  | 0.0360 (8)  | 0.0359 (8)  | 0.0037 (7)   | 0.0083 (7)   | -0.0008 (7)  |
| C15 | 0.0505 (10) | 0.0371 (9)  | 0.0570 (11) | 0.0067 (8)   | 0.0173 (9)   | 0.0043 (8)   |
| C16 | 0.0558 (11) | 0.0317 (9)  | 0.0786 (14) | -0.0040 (8)  | 0.0191 (10)  | -0.0131 (9)  |
| C17 | 0.0626 (13) | 0.0473 (12) | 0.0702 (14) | -0.0063 (10) | -0.0055 (11) | -0.0251 (10) |
| C18 | 0.0433 (9)  | 0.0416 (10) | 0.0501 (10) | -0.0011 (8)  | -0.0055 (8)  | -0.0125 (8)  |
| 03  | 0.0678 (9)  | 0.0518 (8)  | 0.0404 (7)  | 0.0186 (7)   | 0.0246 (6)   | 0.0102 (6)   |
| C19 | 0.0786 (14) | 0.0398 (10) | 0.0466 (10) | 0.0067 (9)   | 0.0168 (9)   | 0.0003 (8)   |

## Geometric parameters (Å, °)

| C1—N1  | 1.4800 (16) | C8—C9   | 1.508 (2) |
|--------|-------------|---------|-----------|
| C1—C13 | 1.527 (2)   | С9—Н9А  | 0.9600    |
| C1—C2  | 1.5517 (19) | С9—Н9В  | 0.9600    |
| C1—C12 | 1.5522 (18) | С9—Н9С  | 0.9600    |
| N1—C4  | 1.3571 (17) | C10—C11 | 1.382 (2) |

| N1—C5        | 1.4338 (17) | C10—H10     | 0.973 (18)  |
|--------------|-------------|-------------|-------------|
| O1—C4        | 1.2238 (17) | C11—H11     | 0.967 (17)  |
| C2—C3        | 1.520 (2)   | C13—C18     | 1.386 (2)   |
| C2—H2A       | 0.985 (17)  | C13—C14     | 1.390 (2)   |
| C2—H2B       | 0.995 (18)  | C14—C15     | 1.388 (2)   |
| N2—C12       | 1.3236 (17) | C14—H14     | 0.947 (19)  |
| N2—H2NA      | 0.88 (2)    | C15—C16     | 1.376 (3)   |
| N2—H2NB      | 0.915 (19)  | С15—Н15     | 0.95 (2)    |
| O2—C12       | 1.2305 (16) | C16—C17     | 1.365 (3)   |
| C3—C4        | 1.509 (2)   | C16—H16     | 0.94 (2)    |
| С3—НЗА       | 0.953 (18)  | C17—C18     | 1.387 (3)   |
| С3—Н3В       | 1.010 (18)  | C17—H17     | 0.95 (2)    |
| C5—C6        | 1.386 (2)   | C18—H18     | 0.97 (2)    |
| C5—C11       | 1.387 (2)   | O3—C19      | 1.391 (2)   |
| C6—C7        | 1.388 (2)   | O3—H3O      | 0.84 (3)    |
| С6—Н6        | 0.970 (17)  | C19—H19A    | 0.9600      |
| С7—С8        | 1.386 (2)   | C19—H19B    | 0.9600      |
| С7—Н7        | 0.954 (19)  | С19—Н19С    | 0.9600      |
| C8—C10       | 1.388 (2)   |             |             |
| N1—C1—C13    | 109.70 (10) | С8—С9—Н9В   | 109.5       |
| N1—C1—C2     | 101.20 (10) | Н9А—С9—Н9В  | 109.5       |
| C13—C1—C2    | 115.94 (11) | С8—С9—Н9С   | 109.5       |
| N1—C1—C12    | 110.13 (10) | Н9А—С9—Н9С  | 109.5       |
| C13—C1—C12   | 113.94 (11) | Н9В—С9—Н9С  | 109.5       |
| C2-C1-C12    | 105.12 (11) | C11—C10—C8  | 121.32 (15) |
| C4—N1—C5     | 123.02 (11) | C11—C10—H10 | 117.6 (11)  |
| C4—N1—C1     | 113.58 (11) | C8—C10—H10  | 121.0 (10)  |
| C5—N1—C1     | 123.36 (11) | C10—C11—C5  | 119.88 (14) |
| C3—C2—C1     | 103.77 (11) | C10-C11-H11 | 121.0 (10)  |
| С3—С2—Н2А    | 109.7 (10)  | C5—C11—H11  | 119.0 (10)  |
| C1—C2—H2A    | 109.2 (10)  | O2—C12—N2   | 122.78 (13) |
| C3—C2—H2B    | 113.0 (10)  | O2—C12—C1   | 121.09 (12) |
| C1—C2—H2B    | 111.5 (10)  | N2—C12—C1   | 115.95 (12) |
| H2A—C2—H2B   | 109.5 (14)  | C18—C13—C14 | 117.86 (15) |
| C12—N2—H2NA  | 119.4 (12)  | C18—C13—C1  | 121.16 (14) |
| C12—N2—H2NB  | 122.6 (11)  | C14—C13—C1  | 120.78 (13) |
| H2NA—N2—H2NB | 117.0 (17)  | C15-C14-C13 | 121.18 (17) |
| C4—C3—C2     | 103.93 (12) | C15—C14—H14 | 120.1 (12)  |
| С4—С3—Н3А    | 110.7 (11)  | C13—C14—H14 | 118.7 (12)  |
| С2—С3—НЗА    | 113.8 (11)  | C16—C15—C14 | 120.00 (19) |
| С4—С3—Н3В    | 107.2 (10)  | C16—C15—H15 | 120.7 (13)  |
| С2—С3—Н3В    | 111.2 (10)  | C14—C15—H15 | 119.3 (13)  |
| H3A—C3—H3B   | 109.6 (15)  | C17—C16—C15 | 119.35 (18) |
| O1—C4—N1     | 125.23 (13) | C17—C16—H16 | 120.4 (13)  |
| 01           | 126.77 (13) | C15—C16—H16 | 120.2 (13)  |
| N1—C4—C3     | 107.99 (12) | C16—C17—C18 | 121.15 (19) |
| C6—C5—C11    | 119.85 (13) | C16—C17—H17 | 122.0 (15)  |
| C6—C5—N1     | 119.09 (12) | C18—C17—H17 | 116.8 (15)  |
| C11-C5-N1    | 121.06 (12) | C13—C18—C17 | 120.46 (19) |

# supplementary materials

| C5—C6—C7                   | 119.35 (14)  | C13—C18—H18     | 119.8 (12)   |
|----------------------------|--------------|-----------------|--------------|
| С5—С6—Н6                   | 118.8 (10)   | C17—C18—H18     | 119.6 (12)   |
| С7—С6—Н6                   | 121.8 (10)   | С19—О3—НЗО      | 108.3 (17)   |
| C8—C7—C6                   | 121.63 (15)  | O3—C19—H19A     | 109.5        |
| С8—С7—Н7                   | 118.1 (11)   | O3—C19—H19B     | 109.5        |
| С6—С7—Н7                   | 120.2 (11)   | H19A—C19—H19B   | 109.5        |
| C7—C8—C10                  | 117.95 (14)  | O3—C19—H19C     | 109.5        |
| С7—С8—С9                   | 121.19 (16)  | H19A—C19—H19C   | 109.5        |
| С10—С8—С9                  | 120.85 (16)  | H19B—C19—H19C   | 109.5        |
| С8—С9—Н9А                  | 109.5        |                 |              |
| C13—C1—N1—C4               | 142.23 (12)  | C7—C8—C10—C11   | 0.2 (2)      |
| C2-C1-N1-C4                | 19.24 (14)   | C9—C8—C10—C11   | -179.83 (15) |
| C12—C1—N1—C4               | -91.60 (13)  | C8—C10—C11—C5   | 0.6 (2)      |
| C13—C1—N1—C5               | -40.05 (16)  | C6-C5-C11-C10   | -0.5 (2)     |
| C2-C1-N1-C5                | -163.05 (12) | N1-C5-C11-C10   | 179.43 (13)  |
| C12—C1—N1—C5               | 86.11 (15)   | N1—C1—C12—O2    | 15.40 (18)   |
| N1—C1—C2—C3                | -29.06 (13)  | C13—C1—C12—O2   | 139.14 (13)  |
| C13—C1—C2—C3               | -147.64 (12) | C2-C1-C12-O2    | -92.85 (15)  |
| C12—C1—C2—C3               | 85.58 (13)   | N1-C1-C12-N2    | -169.31 (12) |
| C1—C2—C3—C4                | 29.29 (14)   | C13—C1—C12—N2   | -45.57 (16)  |
| C5-N1-C4-01                | 0.5 (2)      | C2-C1-C12-N2    | 82.44 (14)   |
| C1-N1-C4-01                | 178.18 (13)  | N1-C1-C13-C18   | -84.59 (16)  |
| C5—N1—C4—C3                | -178.68 (12) | C2-C1-C13-C18   | 29.21 (19)   |
| C1—N1—C4—C3                | -0.96 (15)   | C12—C1—C13—C18  | 151.44 (14)  |
| C2-C3-C4-01                | 162.53 (14)  | N1-C1-C13-C14   | 90.18 (15)   |
| C2-C3-C4-N1                | -18.35 (15)  | C2-C1-C13-C14   | -156.02 (13) |
| C4—N1—C5—C6                | -76.02 (17)  | C12-C1-C13-C14  | -33.79 (17)  |
| C1—N1—C5—C6                | 106.48 (15)  | C18—C13—C14—C15 | -0.6 (2)     |
| C4-N1-C5-C11               | 104.04 (15)  | C1-C13-C14-C15  | -175.51 (14) |
| C1-N1-C5-C11               | -73.46 (17)  | C13—C14—C15—C16 | -0.3 (3)     |
| C11—C5—C6—C7               | -0.4 (2)     | C14—C15—C16—C17 | 0.9 (3)      |
| N1-C5-C6-C7                | 179.62 (13)  | C15—C16—C17—C18 | -0.6 (3)     |
| С5—С6—С7—С8                | 1.3 (2)      | C14—C13—C18—C17 | 0.9 (3)      |
| C6—C7—C8—C10               | -1.2 (2)     | C1-C13-C18-C17  | 175.77 (16)  |
| C6—C7—C8—C9                | 178.85 (15)  | C16—C17—C18—C13 | -0.3 (3)     |
|                            |              |                 |              |
| Hudrogen-bond geometry (   | å°)          |                 |              |
| riyarogen bonu geometry (1 | ·, /         |                 |              |

| D—H···A                                            | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|----------------------------------------------------|-------------|--------------|--------------|------------|
| O3—H3o…O2                                          | 0.84 (2)    | 1.90 (2)     | 2.741 (2)    | 176 (2)    |
| N2 <sup>i</sup> —H2nB <sup>i</sup> ···O3           | 0.91 (2)    | 2.00 (2)     | 2.860 (2)    | 156 (2)    |
| Symmetry codes: (i) $x+1/2$ , $-y+1/2$ , $z-1/2$ . |             |              |              |            |





